Approximate implicitization using linear algebra

نویسندگان

  • Oliver J. D. Barrowclough
  • Tor Dokken
چکیده

We consider a family of algorithms for approximate implicitization of rational parametric curves and surfaces. The main approximation tool in all of the approaches is the singular value decomposition, and they are therefore well suited to floating-point implementation in computer-aided geometric design CAGD systems. We unify the approaches under the names of commonly known polynomial basis functions and consider various theoretical and practical aspects of the algorithms. We offer new methods for a least squares approach to approximate implicitization using orthogonal polynomials, which tend to be faster and more numerically stable than some existing algorithms.We propose several simple propositions relating the properties of the polynomial bases to their implicit approximation properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self - Intersection Problems and Approximate Implicitization ? Jan

We discuss how approximate implicit representations of parametric curves and surfaces may be used in algorithms for finding self-intersections. We first recall how approximate implicitization can be formulated as a linear algebra problem, which may be solved by an SVD. We then sketch a self-intersection algorithm, and discuss two important problems we are faced with in implementing this algorit...

متن کامل

Approximate Implicitization of Parametric Curves Using Cubic Algebraic Splines

This paper presents an algorithm to solve the approximate implicitization of planar parametric curves using cubic algebraic splines. It applies piecewise cubic algebraic curves to give a global G2 continuity approximation to planar parametric curves. Approximation error on approximate implicitization of rational curves is given. Several examples are provided to prove that the proposed method is...

متن کامل

Numerical Implicitization of Parametric Hypersurfaces with Linear Algebra

We present a new method for implicitization of parametric curves, surfaces and hypersurfaces using essentially numerical linear algebra. The method is applicable for polynomial, rational as well as trigonometric parametric representations. The method can also handle monoparametric families of parametric curves, surfaces and hypersurfaces with a small additional amount of human interaction. We i...

متن کامل

Implicitization of curves and (hyper)surfaces using predicted support

We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation given a superset of its terms. For predicting these terms, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynom...

متن کامل

Numerical stability of surface implicitization

In geometric modelling surfaces can be given essentially in two ways: implicit and parametric form. The automatic transition between the implicit and the parametric representations of surfaces is of fundamental importance. In the literature there are several symbolic/numeric implicitization techniques based on resultants [1], Gröbner–basis [2], moving surfaces [3], linear algebra [4], but the n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012